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Ab~tr.t~" 

Off the basis of an axiomatization of cl~sic~| therm~ynam~cs given in a p~e~ious paper~ 
the e~dsience of Caznot engines is established, a~d used to pro'm ~goroudy the vrinciple 
of increase oferrtropy and Clausius" inequality for compou~ ~jstem~ 

1. Introduction 

L~ ar~ear6r (Boyling, 1972) hereafter referred to as I, an axiomatic 
formvLatio~ of  ci~sz~'al thermodynawAcs was proposed, which was 
~ a ' J y  a ~gorou~,w.r;:r ,~f LVA: o f Carath~odory (Carath~odo Er 1909). 
On the basis of the postidate, laid dow~f m ~, we shall here prove the 
e~stence ~f C~mot engines, and hence deduce t~e p:Snciple of increase of 
~ t ropy  for compound systems irt full gener~ty (Le. wi~ ~ut the restric- 
tions imposed in I). 

Carn~ engines are constructed in Secdo~ 2,tEe procedure being to ~ta~'i 
with simp~ Carnot engines capable of  executing sinai! Ca_mot cycles 
between pairs of Mmost equal temperatt~es, and then to build UP out of 
these compound Caraot engines of arbitrary power worVdng between 
a r b i t r ~  pairs oftem~ratures. 

In Section 3 the principle of increase of entropy for compound systems 
is proved with the aid of two further assumptions about the re~tJon of 

~adiabatie accegsibiiity. An indirect method of proof is used, in which it is 
assumed that the compound system M can undergo an adiabatic tra~.sition 
from a state x to a state y, which is accompanied by a decrease ~n entropy. 
A contradiction is established by imagining ?~( to pass from x to y via a 
sequence of small quasi-static transitions, during each of which a particular 
simple component of M can be in therma! equilibrium with sor~e thermo- 
meter (I). The resulting transition of the product system consisting of M 
and all of these thermometers is adlabatically impossible, but can never- 
theless be achieved by making M perform the postulated adiabatic transition 
from x to y while the thermometers undergo a transition which is shown 
to be adiabatically possible by considering an associated transition in 
which they are thermally coup!ed with a number of Carnot engines. 
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Seoion 4 the principle of increase of entropy ~s u~ed to p~ovc z f,~rm 
of  Claus~u$) inequality. 

The defir~Pdons and notation~ oI'I are employed throughout. 

Z The Ex~enee  o f  Carnot Engines 

functions was established in I on the basis ofpestulaies !-V of that paper, 
Explicitly. if M is a simple system, whose (equilibrium) state_~ form a 
connected C | differenfiable manifold (als0 denoted by t ~  symbN M), 
the-at.he entropy S,~ and absolute temperature T~ are C functmvs _r~ the 
C "~ manLrold M~ 

Ifthe shnp!e system Mi~ of the special type known in I as a thermometer, 
thenpost~tate V(e) os implies that eve~-i point (Le. state) x of M may be 
~rronnde~J by a standard coord_~a~e ae~gbbourhood V, i.e. an open 
rectangular coordinate neighlz~urhood on -~ich S .  and Tu are two of 
t_he local coordinates~ It is therefore c|e~r that in this ce~;e ?.5 can be taken 
ar~,md a sma!l Carnct cycle within V by keeping the coordinates other 
~a~  S~ and ~ fixed and making it desca-i~e a rec~angte ~ t~e ~<~e, :,;: 
plane~ Hewever. our pomp_lares do not guarav:t~ ~hat M cart perfbrm a 
C,3. mot cyc]E-ffffi~6~-~othennzJs have widely separated temperatures. To 
obtain a Carnot engine to work ~ : e e m  an arb?.rary pa~r of terape~a~ur~, 
it is neceSsary, to c~nsider a Compbuv~d system co~stm~, ofa wtm~e battery 
of infinitesimal Carnot engines of the abo~,r t : , ~  

Le t  T' and T " b e  any tWO absolute temperazu~s satisfying 0 < T' < T ~. 
a point T* of the closed interval [T', T'I, there exists a thermometer 

M*, a s t a t e ~  of  M* such that TM.(x*) = T*, and a standard neighbour- 
hood V* 6fx* i~ M*. Tt~e open interva!s ! * =  Two(V*) for varying T* 
constitute an open covering of the topo!ogicaI space IT',T"]. Since 
[ ~ , T  ~] is compact, it can be covered by a fiahe number of these ~ntervats, 
and we may assume whhout loss of generality (by eliminating some of th.e 
intervals if necessa~) that this finite covering consists of a finite sequence 
of intercals I~*, " "  * ~ . . . . .  I, satis~ing 

T' ~/I*, T" ~ I.* 

Tj* ~ Is* fl I~.,_~ f o r j =  I, 2 . . . . .  n -  I 
where 

~ *  = T "  T ' =  To* <7"1" < " " < z  ,_t < T,* 

Let 3,t3 be  the thermometer corresponding to the interval 13", V~ t h e  
corresponding standard ne~ghbourhood, and let AS be any positive 
number smaller than the length ~ of the sma!iest of the open intervals S~(V~) 
f o r j  = 1,..., n, whe~ SJ is the entropy of M~. Then clear!y 3:tj can perform 
quasi-statically a small Carnot cycle between the tcmperatures Tj*_~ and 
T3* in which the entropy difference between the two adiabatics is AS. 
. . . . . . .  :" "- send M~ rouna the re.,t.....,, xsysz jw s in the 



(Sa, 7~, } pk3~e; k~p[ng the other s|andard total coordinat~ on ~b all fi~oed~ 
where ~he s1~I~ x~, y~ ~ a~d ~'j correspo,d to ~.he point~ (Sj*,~3*)~ 
( 4 * +  AS,  T?) .  (S~*+ AS, Tj_t) ar~d I~% ,T/~--z) or the (S~,Tj) plane. By 
suitab!y combining.~hese cyet~ for th:e M~, we can -now make the produe! 
sy~tg~ll g = J~/'l • M~ • .... • M,. (i.e~ the ~stem consisting of the M; 
separated by adiabatic partitior~) perform a C~r~o~ ~4c~ between ~_he 
temperatures T'  and T ' .  

The Carnot e~'de for ~he compound system M begins arm end~ ~ t h  1be 
staI~ (x~,x~ . . . . .  x,) and proceeds quasi-sta~Scalh'.~ts fo!lows: 

~2I~ ~ ' e  i so~erm~ ~-. tra~Pde~s ~c!~ i~volve only one of the subsystems 
.lira. I~; one the subsystem M,, which w~e ca~ r tread oF the Carnot engine 
M, proceeds isothermally from the state x., m 1he sr~r. y~ zt temperature 
_7 ~, absorbiog ~em T,~JS  in ~he process. In the other the ~ u b ~ s ~  ~f :  
wt~-5 we call the fooh proceeds isothermally from tl~ s~te z~ to t~e slate 
w~ at teml~an~re T ~, gi~4ng t, ui heax T ' A S  in the processo The adiabatic 
transition from (~ . . . . .  w~,~ to ~x~ ... . .  x.) is the transition in which each Mj 
passes quasi-stOically and adiabatic~ily from w~ to x~ in the obvious w~y. 
The other adiabatic transition is more comp,c-~.ted, and consists of t~.~ 
following sequenge of  quasi-~tatic adiabatic trar~sitions: 

.: (xa . . . . .  x , ' t , y 9  -+ (x~,.. . ,x~-t~z,) 

. . . .  

/ 
/ 

The horizontal arrows here represenl adiabatic transitions in wNch only 
one 6fthe M~ takes part. The oblique arrows represent transitions in which 

isotherma. ,  ~'~'~" the two of the M~ exchange heat quasi-statically and " " "v , . . . . .  
~ rest of  the M, remain unchanged. These transitions are a~so adiabatic 

since ~ e y  proceed at a constant entropy value for ~ e  simple system which 
is the sum (I)" of  the two M~ invo!ved. This is also physically obvious, since 
the transitions involve no heat exchange between M and the outside world. 

Thus we have built up a cycle for M consisting of two isothermal transi- 
tions at temFr T' and T" separated by two adiabatic transitions, 
i.e. a Carnot cycle between the temperatures T' and T". In the course of 



m ~  performs an equW-alent amotmt of  ~sefut external work. We can 
i m a ~  the p~.w~ og~be engine by a factor l: by t~!aci~g ~ c h  , ~  N the 
~-~m of  M~ @ ~  itself k thnes, i~e. tge simple system consisting ol'k copie,~ of 
Mj ~parated by dia~h, rmic p~r~ifior~s. For  th{~, has lhe effex:t ofmu!tiplying 
3 S  by a factor k; S i n ~  the original dS  ea~ be ~s small a~ we ptea~, this 
means in effec~ thai we ca]t act~ieve any desired "value o f  AN i.e~ con~rt~ct 
a Carnot  enNne of  arbitr~:~ powe~ o ~ i ~ . g  bmween the ~ e m , ~ t u r e s  
T* and T L  

Since the whole cycle is quasi*static and lherefere reversible, we c ~  
put it into reverse and so make M act as a refrigerator, in which the work 
( T ' - -  T~)AS is m~ed to extract heat T' AS from a body at temperattrre T" 

supply hea~ 7"  AS to a body at  the higher temperature T' .  
It is perhaps nnn~es._~m~y te  add that the Carnot cycle ~.;onstructed above 

is by no mean~ unique, noris  the engine M that performs it. 

3. The Principle e f  Incre~e qf  em~epy 

Before we proceed an:y I~arther, ~ e  m u ~  introduce tw~ further assump* 
tions about the relatio~ -< of  adiabatic acc~s~ilivy: 

(i) Let M and N be an~ two thermodynamic systems, x and y any two 
states of  M, and z any state of  A\ Then (x,z) ~g O',z) fo_r the product 
system M x N i f a n d  only ] fx  ~ y for M. 

0i~ Let M,o M2. .. . .  M, be muruah~y compatible simv~e systems (i.e. 
sL'wple systems capable of  cqe• ~t the same temperature), x~ 
and y~ so.ares of  M~ such that x~ -~ x2 . . . . . .  x, and y~ -~, Y2 . . . . .  ~ Y~ 
(where ~ denotes the equality of temcerat~are,, a~ in ~.r' Then- 
(xl,...,.x~) ~ O'~ . . . . .  ),~ for the product system t-~7.~ :~,: .~m which 
the 3,/~ are separated by adiabatic partitions) if and on!y if 
(x~ . . . .  x,,) "~ (YN .... y,) for ti~. sum-~"/-~_~ Mt (in.which the M:~ are 
separated by diathermic pa~itions). 

The 'if" parts of  both &these  assumptions were already made in I. The 
"only if '  part of  (i) seems physically reasonable, and has already been used 
by Cooper (1967). The'onty if" part of (ii) amounts to aI!o wing the temporary 
insertion of  internal adiabatic partitions in the course of an adiabatic 
transition, provided the insertion and s~bsequent removal occar whJ!e the 
~ernperature of  the system is uniform. Since the insertion and lemoval 
processes are purely 'mechan,:cal', this is evidently in accordance with the 
usual interpretation of the word. admbat._ (Buchdahl, t966). 

We now define a new relation < on the states of an arbiu"a~ thermo~ 
dynamic .system M in terms of  the relation ~< as follows: 

x < y  i f  and only Lf x<~y arid y g x "  

Clearly < is transitive. For suppose x < y and y < z. Then x < z by the ~ 



z ~ ~ro lhem ~ i ~  x ~ y, ~e  shouM have z ~)~ eontradictiDg y < zo 

We now deduce, as an immediate e t m s e q ~ e ~  of  ~4~mption (i)~ tM 
f ~ o w i n g  lemma and igs.eoroIl~ry: 

Let M and N be- any two thermodynamic sys~em~ x and y ~my Iwo 
mates of  M, and z an 3" state o fN.  "I7~en (x,z) < (y,z) for l~ r x N i fand only 
i f x  < y  for M. 

Coro//ary 

Let ally,..., M~ be ~ o d ) m a m i e  systems, x~ and y, slates of  M~ saris(y- ~ 
ing x, < y ,  ( i =  1,.o.,n). Then the states x = (xl . . . . .  :r end y = O'~ ...... Y,} 
of  theproduct  systexa M~- ]"ILa M: satisfy x < y~ 

The eorot la~ follow~ from the teresa  vi~ ~ e  s e q u e ~  or in~ualffies: 

+ _ x . )  < . . . .  , x . )  < < . - .  

< < 0' : , .  . . . .  ++Po} 

We likewise deduce ~ o m  ~arz\D+don (qY0 +he fo1"~wing iemJ+m: 

/.,emma 2 

Let M~ be a simple system, M2 . . . . .  M, ~ermome~ers such tha~ Mi, 
~!4~,~ .., M,  are mutually compatible, x; and y~ sg.~tes oF M~ such that 
xa ---x~ . . . . .  x.  and y~ ~Y2 . . . . . .  y.. Then (x~ . . . . .  x+~ ~ < (Ya . . . . .  y~) for 
I ~ - ~  Mt i f  and : ~ v  if  Z7-~ S+(x~) < ~ - x  S+(y~), where S+ is the entropy 
o f  M,. 

To  prove this, one has merely to observe that the er..tropy of tb:e s~:pJe 
system ~L~ M~ is an empirical entropy 03uchdaht, 1966): for that s)stem. 

It is evident that lem_ma 2 would sti!i hold ffassumption (ii) were, ~aken 
to app,;  onIy to the special case where M~ .. . .  , M+ are all then~eme:e~ (so 
that Y.7--?vl~ is a simpie system). However, there seems to be no good 
physical reason for weakening (and thereby complicating) assumption (ii) 
in this way. 

We are new ~n a poskion to prove ~he pdnCple of  increase of  entropy ir~ 
the following form: 

Theorem 
�9 Let M .be a compound system, Le. a system of  the form M = I-I~ Mi, 

where the -~,f~ are all simple.Then, if x and y are states of  M satisfying 
x < y, the entropies of these two states must sagsfy S(x) < S(y). 

Proof 
�9 Suppose on the contrary that x ~ y  but that S(y) < S(x), i.e. *.hat 

x < x 
U 1 
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where S~ is the emropy of  ~r and x~ and y~ are the ~tat~ of  M~ een-e~ 
the states and y o f  M~ The~ :: ~ x l m ~  t o  . . . .  x 

~s- .  z ~s, < o 

a s =  s ( r ) -  s(x) 
~s ,  = s , f . v 3 -  s , (~)  

We ~ prove the theorem by showing that the above supposition ~e~d.~ 
ta  a r  

l ~ t  ~ve observe that, as M~ i~ connected, there exists (~ee e.g. Hocking & 
Young, I96I, Theorem 3-4, p, 108) a finite family of open sets V~j and 
l~J~t~/~j in ?d, such that x~ ~ l ~ ,  y~ ~ I~,~ p,~ ~ ,  ~ C~ V~.j+~ ( j  = t . . . .  , 
mi-- 1), where w~thin each ~q~ the absotme temperatur~ T: of  M~ lies in 
the t e m p e ~ t ~ e  zz~ge c~" a ~ a r ~ "  ' ne,ghbouruo~" �9 L , r  o~" ~rne  ~hermo- 
meter M~j~ 

Now, by hypotkres~. 
Z .  z~ iJ  , j -  , 

where 
as~ = s,(~,9- s,(p~._,~ U-- L ..... m,) 

Plo -----X~, ptm t ----- y~ 

We ca~ therefor~ choose quantities dS~ sat silting 

X ~ S b = 0  
r 

ASo + AS b < 0 for MI i and j 
and 

e .g .  we c.~utd take 

where 

AS,:~ = --ASIj + m -I ~ ASz~ 

By replacing &r~j by the sum of several copies of itself, we can wid~r~ the 
standard neighbourhood W~ 1 in th~ entropy direction to any des[red 
extent. We may therefore assume without ioss of generahty that Mtj 
possesses three states x~j, y~j and z~j in W~j satisfying 

T, Ax,~) = ~ t z ,  h = 7,(p,.j_~) 

T, t y , j )  = 7,(p,h 
S, f l y . ) =  S,)(:,j) = S, /x,~)  + AS;j 

and 
xu ~ fit, 1-I, YU "~ PlJ 

Sdp,j) + S . ( y . )  = S,@,. j_~) + S~j(x.) + d S .  + .~S',., 
< ~IP~, j-1) + .~Ax:lj) 



~ & R N O T  ENGtNES A N D  3 7 t ~  PI~tN~C~LE O F  ~r ( ~  E N T R O P Y  29~) ' 

Therefore, by lemma 2, (p~y~)  < ( ~ : .  ~,x~) for ~.he ~)'stem M~ x M~s , 
mad hence, by lemmz I, 

for M, x 1-'I~M w S i n ~  this holds for ]---I  . . . .  , m~, we ma~ use the 
tr~nsiti~ty of  the relation < to dedu~  that 

< (x ,o  . . . .  

for  3d, x I-I~ M,~. I t  then follows by the corollary to lemma I that 
0 ' , ~  < (x,.7) for M x 3~,where t~r = 1-I,~ M~j, and ~ and .~ are the states 
of.~3 for which M~ is N the state x,~ and y,/res!x~tive!y (for all i and])o 

We shall-now obtain a conta-adk.~ion, by showingtha t iu fact (x,2) ~ (y, ~). 
Since x < y for M by hypothesis, it will suffice to show that ~ < y fox ~2 

To d~ th/s v,~ ~ o d u c e  for each i a n d j  a Ca-mot engine M~ c~apabte of 
executing a Carnot cycle ~ e e ~  the temperat~m T~a(x~s ) end some fixed 
temperature To less tha~i ~dl ~f Ne T,~(x~), the en~opy difference between 
the adiabafics of  the cycle being precisely AS~j. ExpliN~ly~ ~'e zssume th~, 
the cycle proceeds as follows: 

isothermal a t  temperature Tij(x~j) 
< 

~ e a t  T~j(xU)~I S'gj lost 
wU Z U 

~ ~  te.~pe~,~a~ure To V~ 

(with an obvious change of  word_~ng in the event that ~.~S~ is negative). 
We now prove that ( . ~ , z ~  O~,z ~) for the sys~m : ~ x  M' ,  where 

M '  = r I , j  M;j  and z' is the state of  M '  for which ,l,l[: is in ~he state zi'~ 
First ly,  (L, z3 <(~,~ ) (in an obvious notation), since the product (or 

smna) of M,j with the head of  AI~'~ has the same entropy in these two states. 
Physicall3,, an adiabatic transition be~ween these ~. ~, ~ s~ates may be ~ealised 
by allowing transfer of heat between each M~ and ~i~e head cf the corre- 
sponding M[I (the other simple components of  Mi': remaining unchanged). 

t t t Secondly, (2,w') <<. U,x'), since w,j ~< x,j for each ?~.%. 
? ,[ .  To see this, no~e that only Thirdly, (,~,x') ~< (zT, y'), since x e ~< y'  for * ' 

the feet of  the M[j change state in the transition from x' to y'~ that these 
are all at temperature To in both states, and that lhe net entrep/difference 
between the two states is ~ :  AS'tj = 0. Thus the transition can ~-.: :_~chieved 
adiabatically for the sum, and therefore also Coy assumption. ~ii;) for the 
product of the feet, and hence for the whole system M' .  Pb.ysically, we 
could arrange that the Carnot engines performed their T = To [sothermals 
simultaneously with their feet in thermaI contact, their individual rates 
being mutually adjusted in such a way that no heat ever passed between 
M '  and the Outside world. This is possible since the net absorpfien of heat 
in the transition is T o ~ j  AS~j = O. 

Fom~th!y, (.~,y')< r s in~  _z~-<_ y~ far__ ,14__ ~ and ~v'.,~ ~< ~ '  . . . . . .  for ~:.,~. 



By ~ tr~nsi~Mty of ~<, i~ therefore follows that (Lz3 ~(jLz') ~r 
~ x-M'. We de.du~ at o~cr fror_*~ as~v'mjt~o~ O) tha~ 2 <f i  for 3~Q ~ d  
hence that (x,2) ~< (Y, J3 for M x .,~-, cb~tradicting (y,.~) < (x,.~). 

Thus the assumption that S(y) < S(x) has ied W a coetradictior~ and 
- we can only conclude that S(x) <~ S(y), as in ihe theorem. 

Conskler a ~ l i c  lransition o f a  compolmd system M in which it begins 
~nd en~s in a certain definite state x. The transition is not necessarily 
qtmsi-static, so the sta~.e of  M will :not in general be.. well-defined at inte~- 
mediate stages. However, we assume that the transhion may be para- 
metrised by a reat parameter ~ rtmni~g from 0 at ~he 5~a~ ~o I a~ ~he finish, 
in such a way that  ~he rate o f  heat intake dQ/dt is well-defined and con- 
t~aoas for 0 ~ i ~ _~ ( e ~ p t  I~assibly for a fi~te m - ~ b ~  o f  exceptional 

~r fro'thor assume t,haI this he~. ~ at a~v given stage being ab~,~rbed 
from or gi-r out to some simple com-~ ,~ t ,  _ e-~ .-- :~-~ a- . . . . .  a-~x~U~ ~ m p o u n d  
system Mx, which executes in the process a quasi-static (but J~ genes-al 
non-cyclic) transition, represented by a piece-wise smooth curvc 7~ in 
-Ml. This assumption is physical!y reasonable if Mx consists of  a number of 
heat re~rvoirs who~  thermal capacity greatly exceeds that of  M. The 
*~_sJr~tjon e f  the prc, d~ct system M X M~ may then be too rapid for M tG 
be always in thermodynawdr equ~AJbfium bvt ~everthe!ess slow enough for 
the equilibrium of  the large heat reservoirs of  MX ne~.~er ~o ~r seriously 
disturbed. 

Since M exchanges a!t .of its heat with M~, the combined transition of  
M x M~ wit! be adiabatic, and wiiI therefore result in a net into-ease in 
entropy (in the wide sense). As the entropy cur M is the same at start and 
fi~sh, the entropy S~ of  .~qa must therefore have increased in the course of  
the trar, sition, i.e. AS~ >10. 

Since the combined transition o f  M • M~ is adiabatic, we must h a v e  

dS~" 

at (almost) any:instant, where T~ "is the absolute temperature of the simple 
component of  M~ with which M is exchanging heat at that instant. Thus 

1 dO.= dS~ 
T ~ d t  dt 

and 
t 
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Ii is important to ~ealise that ?~ {s uot the insta~laneous ~erapera~ure of  

sinmle), ha* that of  the simple sys*em with which i{ is ins*antaneavsly 
cxd~anging heal. 

We also remark tha~ ~ e  inequalily d.*~es not aalcmal.ically reduce to an 
equality ~'hen 1be Wciic ,r~nsitien of M is quaa{-statie, aa~d therefore 
(according ~o our assumptions) r,.~,ersab!e. In ,*his case ~he ~a.nsition is 
repI~sente d by a (piece-wise smooth) closed curve y in M~ and we may v, Mte 
dQ/dt = ~,(~) almost over, inhere, where r is the heat form (I) of  M, so that 
Claush~s' inequality takes/he form 

It is now temNing to conclude that the left-hand side must vanish, s.~tee 
~ c  ~m~, inequal~y may ~ apptied to ~-~he reverse o f  fl~e transition 7- TNs 
m~ame~t fails be~.use the reversal of  7 is in general accompanied by a 
change N ~l:e f ~ h ~  T~, whicfi is not a f~ncfimn of  s~a~e of  M bu~. a 
fimction depending on the path 7 and only defined on 7. 

As an example, consizter a~ i~,>me~ric,CB_.w.'bd~h!, ~ % ~  qt~asi-~afic Q~elie 
u'ansition ~(t) of  a simple system M. in u.hich its atyso|trte ~temperamre 
rises monotonically from T'  to  T ~ as-? ~w~cases from 0 m z}, and then fal!s 
monotonically from T" back to T '  as t increa~:s from �89 to I. For  the 
t ~ t i o ~  7~ we must have T t > T fb r  0 < t < -} (when M ~s absorbing heaQ 
but T~ < 7 ~tb~ z < t  < t (when M is losing heat); where. T is the instarv 
taneeus abs~lme t cm~ra tu re  of M. On the other hand, for the reverse 
uansition p d:efined by p(t) = f i l  - t), .we must have T~ > T far 0 < t < �89 
(corresponding to the part of 1, o~ which -} < t < t) and Tf < T for �89 <-t < 1 
(corresponding to the part o f ?  on which 0 < g < �89 Thus T~(t) is not the 

.g - ~, 

aud there is no contradiction in having both integrals negative. 
Thus Claus~us' {~equaiity cannot in general be reverse~..eve~ whee the 

transition of 3f  is quasi-static. This is because, although the a~sociated 
�9 trans'~tion ogtM combined syste/n M x M~ is then quasi-static and therefore 
reversible, its reverse iS not in general adiabatic (since it may involve a 
decrease in entropy). 
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